High‐Rate CO2 Electroreduction to C2+ Products over a Copper‐Copper Iodide Catalyst

Electrochemical CO2 reduction reaction (CO2RR) to multicarbon hydrocarbon and oxygenate (C2+) products with high energy density and wide availability is of great importance, as it provides a promising way to achieve the renewable energy storage and close the carbon cycle. Herein we design a Cu‐CuI c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-06, Vol.60 (26), p.14329-14333
Hauptverfasser: Li, Hefei, Liu, Tianfu, Wei, Pengfei, Lin, Long, Gao, Dunfeng, Wang, Guoxiong, Bao, Xinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical CO2 reduction reaction (CO2RR) to multicarbon hydrocarbon and oxygenate (C2+) products with high energy density and wide availability is of great importance, as it provides a promising way to achieve the renewable energy storage and close the carbon cycle. Herein we design a Cu‐CuI composite catalyst with abundant Cu0/Cu+ interfaces by physically mixing Cu nanoparticles and CuI powders. The composite catalyst achieves a remarkable C2+ partial current density of 591 mA cm−2 at −1.0 V vs. reversible hydrogen electrode in a flow cell, substantially higher than Cu (329 mA cm−2) and CuI (96 mA cm−2) counterparts. Induced by alkaline electrolyte and applied potential, the Cu‐CuI composite catalyst undergoes significant reconstruction under CO2RR conditions. The high‐rate C2+ production over Cu‐CuI is ascribed to the presence of residual Cu+ and adsorbed iodine species which improve CO adsorption and facilitate C−C coupling. A Cu‐CuI composite catalyst achieves a remarkable C2+ partial current density of 591 mA cm−2 at −1.0 V vs. RHE, substantially higher than Cu or CuI alone. It is ascribed to the presence of residual Cu+ and adsorbed iodine species which improve CO adsorption and facilitate C−C coupling during CO2 electroreduction.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202102657