Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification

Clinicians and pathologists traditionally use patient data in addition to clinical examination to support their diagnoses. We investigated whether a combination of histologic whole slides image (WSI) analysis based on convolutional neural networks (CNNs) and commonly available patient data (age, sex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of cancer (1990) 2021-05, Vol.149, p.94-101
Hauptverfasser: Höhn, Julia, Krieghoff-Henning, Eva, Jutzi, Tanja B., von Kalle, Christof, Utikal, Jochen S., Meier, Friedegund, Gellrich, Frank F., Hobelsberger, Sarah, Hauschild, Axel, Schlager, Justin G., French, Lars, Heinzerling, Lucie, Schlaak, Max, Ghoreschi, Kamran, Hilke, Franz J., Poch, Gabriela, Kutzner, Heinz, Heppt, Markus V., Haferkamp, Sebastian, Sondermann, Wiebke, Schadendorf, Dirk, Schilling, Bastian, Goebeler, Matthias, Hekler, Achim, Fröhling, Stefan, Lipka, Daniel B., Kather, Jakob N., Krahl, Dieter, Ferrara, Gerardo, Haggenmüller, Sarah, Brinker, Titus J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinicians and pathologists traditionally use patient data in addition to clinical examination to support their diagnoses. We investigated whether a combination of histologic whole slides image (WSI) analysis based on convolutional neural networks (CNNs) and commonly available patient data (age, sex and anatomical site of the lesion) in a binary melanoma/nevus classification task could increase the performance compared with CNNs alone. We used 431 WSIs from two different laboratories and analysed the performance of classifiers that used the image or patient data individually or three common fusion techniques. Furthermore, we tested a naive combination of patient data and an image classifier: for cases interpreted as ‘uncertain’ (CNN output score
ISSN:0959-8049
1879-0852
DOI:10.1016/j.ejca.2021.02.032