Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures
We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-09, Vol.44 (9), p.4961-4974 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric data often form spatially coherent structures - it includes both a unary component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection given the model parameters. Graph-Cut RANSAC, equipped with "the bells and whistles" of USAC and MAGSAC++, was tested on a range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed similar to less accurate alternatives. The source code is available at https://github.com/danini/graph-cut-ransac . |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2021.3071812 |