CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers
• Plant phased small interfering RNAs (phasiRNAs) contribute to robust male fertility; however, specific functions remain undefined. In maize (Zea mays), male sterile23 (ms23), necessary for both 24-nt phasiRNA precursor (24-PHAS) loci and Dicer-like5 (Dcl5) expression, and dcl5-1 mutants unable to...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-03, Vol.229 (5), p.2984-2997 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | • Plant phased small interfering RNAs (phasiRNAs) contribute to robust male fertility; however, specific functions remain undefined. In maize (Zea mays), male sterile23 (ms23), necessary for both 24-nt phasiRNA precursor (24-PHAS) loci and Dicer-like5 (Dcl5) expression, and dcl5-1 mutants unable to slice PHAS transcripts lack nearly all 24-nt phasiRNAs.
• Based on sequence capture bisulfite-sequencing, we find that CHH DNA methylation of most 24-PHAS loci is increased in meiotic anthers of control plants but not in the ms23 and dcl5 mutants.
• Because dcl5-1 anthers express PHAS precursors, we conclude that the 24-nt phasiRNAs, rather than just activation of PHAS transcription, are required for targeting increased CHH methylation at these loci.
• Although PHAS precursors are processed into multiple 24-nt phasiRNA products, there is substantial differential product accumulation. Abundant 24-nt phasiRNA positions corresponded to high CHH methylation within individual loci, reinforcing the conclusion that 24-nt phasiRNAs contribute to increased CHH methylation in cis. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.17060 |