Inference in Bayesian Proxy-SVARs

Motivated by the increasing use of external instruments to identify structural vector autoregressions (SVARs), we develop an algorithm for exact finite sample inference in this class of time series models, commonly known as Proxy-SVARs. Our algorithm makes independent draws from any posterior distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2021-11, Vol.225 (1), p.88-106
Hauptverfasser: Arias, Jonas E., Rubio-Ramírez, Juan F., Waggoner, Daniel F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the increasing use of external instruments to identify structural vector autoregressions (SVARs), we develop an algorithm for exact finite sample inference in this class of time series models, commonly known as Proxy-SVARs. Our algorithm makes independent draws from any posterior distribution over the structural parameterization of a Proxy-SVAR. Our approach allows researchers to simultaneously use proxies and traditional zero and sign restrictions to identify structural shocks. We illustrate our methods with two applications. In particular, we show how to generalize the counterfactual analysis in Mertens and Montiel-Olea (2018) to identified structural shocks.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2020.12.004