Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation

Near-infrared (NIR) light irradiation induced the transformation of polypyrrole (PPy) to nitrogen-containing carbon (NCC) material due to its light-to-heat photothermal property. The temperature of the PPy increased over 700 °C within a few seconds by the NIR laser irradiation, and elemental microan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-04, Vol.37 (15), p.4599-4610
Hauptverfasser: Oyama, Keigo, Seike, Musashi, Mitamura, Koji, Watase, Seiji, Suzuki, Toyoko, Omura, Taro, Minami, Hideto, Hirai, Tomoyasu, Nakamura, Yoshinobu, Fujii, Syuji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Near-infrared (NIR) light irradiation induced the transformation of polypyrrole (PPy) to nitrogen-containing carbon (NCC) material due to its light-to-heat photothermal property. The temperature of the PPy increased over 700 °C within a few seconds by the NIR laser irradiation, and elemental microanalysis confirmed the decreases of hydrogen and chloride contents and increases of carbon and nitrogen contents. Monodispersed polystyrene (PS)-core/PPy shell particles (PS/PPy particles) synthesized by aqueous chemical oxidative seeded polymerization were utilized as a precursor toward monodispersed NCC capsules. When the NIR laser was irradiated to the PS/PPy particles, the temperature rose to approximately 300 °C and smoke was generated, indicating that the PS component forming the core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the successful formation of spherical and highly monodispersed capsules, and Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy studies confirmed the capsules consisted of NCC materials. Furthermore, sunlight was also demonstrated to work as a light source to fabricate NCC capsules. The size and thickness of the capsules can be controlled between 1 and 80 μm and 146 and 231 nm, respectively, by tuning the size of the original PS/PPy particles and PPy shell thickness.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.1c00286