Calculating Reliable Gibbs Free Energies for Formation of Gas-Phase Clusters that Are Critical for Atmospheric Chemistry: (H2SO4)3

The effects of atmospheric aerosols on our climate are one of the biggest uncertainties in global climate models. Calculating the pathway for the formation of pre-nucleation clusters that become aerosols is challenging, requiring a comprehensive analysis of configurational space and highly accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-04, Vol.125 (15), p.3169-3176
Hauptverfasser: Kurfman, Luke A, Odbadrakh, Tuguldur T, Shields, George C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of atmospheric aerosols on our climate are one of the biggest uncertainties in global climate models. Calculating the pathway for the formation of pre-nucleation clusters that become aerosols is challenging, requiring a comprehensive analysis of configurational space and highly accurate Gibbs free energy calculations. We identified a large set of minimum energy configurations of (H2SO4)3 using a sampling technique based on a genetic algorithm and a stepwise density functional theory (DFT) approach and computed the thermodynamics of formation of these configurations with more accurate wavefunction-based electronic energies computed on the DFT geometries. The DLPNO-CCSD­(T) methods always return more positive energies compared to the DFT energies. Within the DLPNO-CCSD­(T) methods, extrapolating to the complete basis set limit gives more positive free energies compared to explicitly correlated single-point energies. The CBS extrapolation was shown to be robust as both the 4-5 inverse polynomial and Riemann zeta function schemes were within chemical accuracy of one another.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c00872