Microfluid-based soft metasurface for tunable optical activity in THz wave

Metasurfaces are usually planar structures and do not possess intrinsic chirality and therefore hardly generate optical activity. Here we realized a tunable optical activity in a terahertz wave through a microfluid-based soft metasurface. The meta-atom is a chiral structured microchannel made of sof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-03, Vol.29 (6), p.8786-8795
Hauptverfasser: Zhang, Wu, Zhang, Bingzhi, Fang, Xiaohui, Cheng, Kejun, Chen, Weiqian, Wang, Zihuang, Hong, Dou, Zhang, Meng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metasurfaces are usually planar structures and do not possess intrinsic chirality and therefore hardly generate optical activity. Here we realized a tunable optical activity in a terahertz wave through a microfluid-based soft metasurface. The meta-atom is a chiral structured microchannel made of soft polydimethylsiloxane and injected with the liquid metal Galinstan. A microfluid pressure system is bonded to the metasurface to reconfigure all meta-atoms simultaneously. By pumping glycerol liquid into the pressure system, the metasurface is deformed from a planar structure to a three dimensional one, which manifests intrinsic chirality for optical activity realization. By controlling the injected glycerol volume, a polarization rotation from 0°to 14° at 0.19 THz is demonstrated. The soft metasurface with tunable optical activity can be flexibly applied in various applications such as polarization microscopy, bio-detection and material analysis, etc.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.420660