Activation of D2 by Neodymium Cation (Nd+): Bond Energy of NdH+ and Mechanistic Insights through Experimental and Theoretical Studies
The kinetic-energy-dependent cross section for the reaction of Nd+ with D2 was studied by using a guided ion beam tandem mass spectrometer. The formation of NdD+ is endothermic, and analysis of the reaction cross section gave an NdH+ 0 K bond dissociation energy (BDE) of 1.99 ± 0.06 eV. Theoretical...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-04, Vol.125 (14), p.2999-3008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kinetic-energy-dependent cross section for the reaction of Nd+ with D2 was studied by using a guided ion beam tandem mass spectrometer. The formation of NdD+ is endothermic, and analysis of the reaction cross section gave an NdH+ 0 K bond dissociation energy (BDE) of 1.99 ± 0.06 eV. Theoretical calculations for the NdH+ BDE were performed for comparison with the experimental thermochemistry and generally gave accurate results. Additionally, relaxed potential energy surfaces for NdH2 + were performed, and no strongly bound dihydride intermediate was located. The Nd+ + D2 reactivity and BDE of NdH+ are compared with analogous results for the lanthanide cations La+, Ce+, Pr+, Sm+, Gd+, and Lu+ to establish periodic trends and insight into the role of the electronic configurations on this reactivity and the lanthanide hydride cation bond strengths. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.1c01766 |