Manipulation of the Regulatory Genes ppsR and prrA in Rhodobacter sphaeroides Enhances Lycopene Production
Rhodobacter sphaeroides is a non-sulfur purple bacterium with great metabolic versatility, capable of producing a variety of valuable compounds that include carotenoids and CoQ10. In order to enhance lycopene production, we deleted the photosynthetic gene cluster repressor ppsR from a lycopene-produ...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2021-04, Vol.69 (14), p.4134-4143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rhodobacter sphaeroides is a non-sulfur purple bacterium with great metabolic versatility, capable of producing a variety of valuable compounds that include carotenoids and CoQ10. In order to enhance lycopene production, we deleted the photosynthetic gene cluster repressor ppsR from a lycopene-producing Rb. sphaeroides strain (RL1) constructed in a previous study to break the control of carotenoid synthesis by the oxygen level. Also, lycopene production was further increased by overexpression of the activator prrA. The superior lycopene producer DppsR/OprrA thus obtained had a high growth rate and a lycopene production of 150.15 mg/L with a yield of 21.45 mg/g dry cell weight (DCW) under high oxygen conditions; these values were ≥6.85-fold higher than those of RL1 (19.13 mg/L; 3.32 mg/g DCW). Our findings indicate that elimination of oxygen repression led to more efficient lycopene production by DppsR/OprrA and that its increased productivity under high oxygen conditions makes it a potentially useful strain for industrial-scale lycopene production. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.0c08158 |