Modular, efficient and constant-memory single-cell RNA-seq preprocessing

We describe a workflow for preprocessing of single-cell RNA-sequencing data that balances efficiency and accuracy. Our workflow is based on the kallisto and bustools programs, and is near optimal in speed with a constant memory requirement providing scalability for arbitrarily large datasets. The wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2021-07, Vol.39 (7), p.813-818
Hauptverfasser: Melsted, Páll, Booeshaghi, A. Sina, Liu, Lauren, Gao, Fan, Lu, Lambda, Min, Kyung Hoi (Joseph), da Veiga Beltrame, Eduardo, Hjörleifsson, Kristján Eldjárn, Gehring, Jase, Pachter, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a workflow for preprocessing of single-cell RNA-sequencing data that balances efficiency and accuracy. Our workflow is based on the kallisto and bustools programs, and is near optimal in speed with a constant memory requirement providing scalability for arbitrarily large datasets. The workflow is modular, and we demonstrate its flexibility by showing how it can be used for RNA velocity analyses. A preprocessing workflow for single-cell RNA-seq data achieves near-optimal speed.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-021-00870-2