Modular, efficient and constant-memory single-cell RNA-seq preprocessing
We describe a workflow for preprocessing of single-cell RNA-sequencing data that balances efficiency and accuracy. Our workflow is based on the kallisto and bustools programs, and is near optimal in speed with a constant memory requirement providing scalability for arbitrarily large datasets. The wo...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2021-07, Vol.39 (7), p.813-818 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a workflow for preprocessing of single-cell RNA-sequencing data that balances efficiency and accuracy. Our workflow is based on the kallisto and bustools programs, and is near optimal in speed with a constant memory requirement providing scalability for arbitrarily large datasets. The workflow is modular, and we demonstrate its flexibility by showing how it can be used for RNA velocity analyses.
A preprocessing workflow for single-cell RNA-seq data achieves near-optimal speed. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-021-00870-2 |