New bone cements with Pluronic®F127 for prophylaxis and treatment of periprosthetic joint infections
In line with the increase in orthopedic prosthetic surgeries, there has been a significant rise in periprosthetic joint infections (PJI) due to Methicillin-Resistant Staphylococcus Aureus (MRSA) bacteria. In case of infection, antibiotic-added spacers are temporarily placed into the periprosthetic r...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2021-07, Vol.119, p.104496-104496, Article 104496 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In line with the increase in orthopedic prosthetic surgeries, there has been a significant rise in periprosthetic joint infections (PJI) due to Methicillin-Resistant Staphylococcus Aureus (MRSA) bacteria. In case of infection, antibiotic-added spacers are temporarily placed into the periprosthetic region. With the release of antibiotics usually failing to work in fighting off infection, recent studies have centered around developing more effective approaches. New polymethylmethacrylate (PMMA) cement mixtures were prepared for this study with Pluronic®F127, bicarbonate, and citric acid addition. Optimal solutions were searched by monitoring vancomycin release on consecutive days with HPLC in in-vitro. The strengths of the samples were measured via four-point bending tests. Compared to conventional PMMA, strength values were observed to have improved by about 20% with 1.0 g of Pluronic®F127. According to HPLC studies, the highest increase for the area under the curve value was obtained for Pluronic®F127 doped mixture with a value of about 20%. It is understood from SEM and BET studies that addition of Pluronic®F127 helps increase porosity. The present study concludes that the optimum concentration of Pluronic®F127 could improve the strength and drug-releasing capacity of the spacer by increasing its porosity.
[Display omitted]
•It was shown that drug release time was increased with Pluronic®F127 polymer-added bone cement.•It was demonstrated by SEM and BET studies that Pluronic®F127 polymer additive changed the pore structure of cement.•Pluronic®F127 polymer additives were demonstrated by four-point bending tests that increased the strength of bone cement. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2021.104496 |