The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index

Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration (NOAA)-9 satellite were acquired of the western United States from March 1986 to November 1987. Monthly maximum value composites of AVHRR normalized difference vegetation index (NDVI) [(nea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 1990-08, Vol.33 (2), p.97-112
Hauptverfasser: Spanner, Michael A., Pierce, Lars L., Running, Steven W., Peterson, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration (NOAA)-9 satellite were acquired of the western United States from March 1986 to November 1987. Monthly maximum value composites of AVHRR normalized difference vegetation index (NDVI) [(near infrared — visible)/(near infrared + visible)] were calculated for 19 coniferous forest stands in Oregon, Washington, Montana, and California. The leaf area index (LAI) of the conifer forests explained 70% and 79% of the variation of the summer maximum AVHRR NDVI in July 1986 and July 1987, respectively. The seasonal variation of NDVI was related to phenological changes in LAI, as well as the proportion of surface cover types contributing to the overall reflectance. The varying solar zenith angles in the summer and winter months complicated analyses of the seasonal differences in LAI of the forest stands by reducing NDVI values in the winter months. It is concluded that AVHRR NDVI data from July were related to the seasonal maximum leaf area index of coniferous forests of the western United States, and that seasonal differences in the AVHRR NDVI were related to: a) phenological changes in LAI caused by climate, b) the proportions of surface cover types contributing to the overall reflectance, and c) large variations in the solar zenith angle.
ISSN:0034-4257
1879-0704
DOI:10.1016/0034-4257(90)90036-L