High Internal Phase Emulsions Synergistically Stabilized by Sodium Carboxymethyl Cellulose and Palm Kernel Oil Ethoxylates as an Essential Oil Delivery System
High internal phase emulsions (HIPEs) with an internal phase fraction of 84 vol % were prepared using carboxymethyl cellulose (CMC) and palm kernel oil ethoxylates (SOE-N-60) as a dual emulsifier. Effects of the oil-phase volume fraction, CMC concentration, and SOE-N-60 concentration on oil-in-water...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2021-04, Vol.69 (14), p.4191-4203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High internal phase emulsions (HIPEs) with an internal phase fraction of 84 vol % were prepared using carboxymethyl cellulose (CMC) and palm kernel oil ethoxylates (SOE-N-60) as a dual emulsifier. Effects of the oil-phase volume fraction, CMC concentration, and SOE-N-60 concentration on oil-in-water HIPEs stability were systematically studied by a Mastersizer 2000 instrument, Lx POL polarizing microscope, rheometer, etc. The bioavailability of tea tree oil can be effectively protected using HIPEs as a delivery system. The experimental results showed that, with the increase of the concentrations of CMC and SOE-N-60, the droplet size of HIPEs gradually decreases and the HIPEs showed good static stability. In addition, it was observed by scanning electron microscopy that the polyHIPEs materials using HIPEs stabilized by different SOE-N-60 and CMC concentrations as templates had different structures. Moreover, the synergism between CMC and SOE-N-60 surfactants plays a significant role in the preparation and stability of HIPEs. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.0c07606 |