Evaluation of Antimicrobial and Antioxidant Potential of Essential Oil from Croton piauhiensis Müll. Arg
A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotic...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2021-05, Vol.78 (5), p.1926-1938 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of
Croton
species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from
Croton piauhiensis
(EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for
Staphylococcus aureus
ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC
50
values ranging from 171.21 to 4623.83 μg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated
d
-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-021-02449-1 |