Vitamin E analogs limit in vitro oxidant damage to bovine mammary endothelial cells
Diseases that occur during the transition period are exacerbated when cows are unable to cope with an increased pro-oxidant load that results in oxidative stress. Dairy cattle are routinely supplemented with the vitamin E analog α-tocopherol to mitigate the severity of oxidative stress. Nonetheless,...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2021-06, Vol.104 (6), p.7154-7167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diseases that occur during the transition period are exacerbated when cows are unable to cope with an increased pro-oxidant load that results in oxidative stress. Dairy cattle are routinely supplemented with the vitamin E analog α-tocopherol to mitigate the severity of oxidative stress. Nonetheless, oxidative stress remains a disease predisposing condition for many dairy cattle. A better method of optimizing the antioxidant functions of vitamin E is needed. α-Tocopherol is only 1 of 8 analogs of vitamin E, all of which have varying antioxidant properties in other mammals, albeit a shorter physiological half-life compared with α-tocopherol. A primary bovine mammary endothelial cell oxidant challenge model was used to determine functions of certain vitamin E analogs. The aim of this study was to determine if other analogs, namely γ-tocopherol or γ-tocotrienol, have antioxidative functions in bovine cells and if these functions may protect cellular viability and endothelial function from oxidant damage. Physiological (10 μM) and supraphysiological (50 μM) concentrations of γ-tocopherol and γ-tocotrienol had a greater capacity to reduce accumulated reactive oxygen species derived from a nitric oxide donating pro-oxidant antagonist, when compared with α-tocopherol, after 30 min to 6 h of treatment. Further, γ-tocotrienol (10 μM) decreased cell cytotoxicity to a greater amount than other analogs at like concentrations, whereas γ-tocopherol (10 μM) reduced lipid peroxidation and apoptosis more effectively than other analogs. Last, α-tocopherol (5 and 10 μM) and γ-tocopherol (5 and 10 μM) significantly slowed pro-oxidant induced loss of endothelial cell barrier integrity over a 48-h period using an electrical cell-substrate impedance sensing system. Concerningly, γ-tocotrienol drastically reduced the endothelial barrier integrity at only 5 μM despite no apparent effect on cellular viability at like concentrations. γ-Tocotrienol, however, was also the only analog to show significant cytotoxicity and reductions in viability at supraphysiological doses (25 and 50 μM). Our results suggest that γ-tocopherol has antioxidant activities that reduces cellular damage and loss of function due to oxidant challenge as effectively as α-tocopherol. These data set the foundation for further investigation into the antioxidant properties of vitamin E analogs in other bovine cells types or whole animal models. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2020-19675 |