Dual self-paced multi-view clustering
By utilizing the complementary information from multiple views, multi-view clustering (MVC) algorithms typically achieve much better clustering performance than conventional single-view methods. Although in this field, great progresses have been made in past few years, most existing multi-view clust...
Gespeichert in:
Veröffentlicht in: | Neural networks 2021-08, Vol.140, p.184-192 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By utilizing the complementary information from multiple views, multi-view clustering (MVC) algorithms typically achieve much better clustering performance than conventional single-view methods. Although in this field, great progresses have been made in past few years, most existing multi-view clustering methods still suffer the following shortcomings: (1) most MVC methods are non-convex and thus are easily stuck into suboptimal local minima; (2) the effectiveness of these methods is sensitive to the existence of noises or outliers; and (3) the qualities of different features and views are usually ignored, which can also influence the clustering result. To address these issues, we propose dual self-paced multi-view clustering (DSMVC) in this paper. Specifically, DSMVC takes advantage of self-paced learning to tackle the non-convex issue. By applying a soft-weighting scheme of self-paced learning for instances, the negative impact caused by noises and outliers can be significantly reduced. Moreover, to alleviate the feature and view quality issues, we develop a novel feature selection approach in a self-paced manner and a weighting term for views. Experimental results on real-world data sets demonstrate the effectiveness of the proposed method. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2021.02.022 |