Excited State Intramolecular Proton Transfer (ESIPT)-Based Sensor for Ion Detection

C-2 and C-5 substituted imidazole skeleton was synthesized through a one-pot two-step strategy. Synthesized molecule emits the light on ESIPT (excited-state intramolecular proton transfer). This molecule was utilized for its proton donor ability, and we have observed that fluoride and cyanide ions c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorescence 2021-05, Vol.31 (3), p.861-872
Hauptverfasser: Kuzu, Burak, Ekmekci, Zeynep, Tan, Meltem, Menges, Nurettin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:C-2 and C-5 substituted imidazole skeleton was synthesized through a one-pot two-step strategy. Synthesized molecule emits the light on ESIPT (excited-state intramolecular proton transfer). This molecule was utilized for its proton donor ability, and we have observed that fluoride and cyanide ions can be detected selectively. Different cations and anions were selected to observe the response of the synthesized molecule. However, there were not any fluorometric and colorimetric response except for fluoride and cyanide ions. Detection limits of fluoride and cyanide ions were found to be 9.22 μM and 11.48 μM, respectively. 1 H-NMR spectra for the solution of the sensor and TBAF (tetrabuthylammoniumfluoride) were used for the identification of [L] − [HF 2 ] − species. 3 equiv. TBAF saturated the solution of the sensor in d 6 -DMSO, and some of the proton resonances shifted to upfield due to the through-bond effect. The disappearance of NH proton with 0.5 equiv. TBAF or TBACN (tetrabuthylammoniumcyanide) showed that there was a proton abstraction by fluoride and cyanide ions, instead of the hydrogen bond. Solid-state application was utilized, and paper test strips were applied. Emission differences emerged when the sensor loaded strips were reacted with TBAF. Time resolved experiments revealed that solution of the sensor and TBAF in DMSO have multiexponential decay, and one of the lifetime was measured as 13.4 ns.
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-021-02716-1