Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment

The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-05, Vol.33 (20), p.e2006328-n/a
Hauptverfasser: An, Li, Wei, Chao, Lu, Min, Liu, Hanwen, Chen, Yubo, Scherer, Günther G., Fisher, Adrian C., Xi, Pinxian, Xu, Zhichuan J., Yan, Chun‐Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge for PEM water electrolyzers. Most catalysts show unsatisfied stability under strong acidic and oxidative conditions. Such a stability challenge also leads to difficulties for a better understanding of mechanisms. This review aims to provide the current progress on understanding of OER mechanisms in acid, analyze the promising strategies to enhance both activity and stability, and summarize the state‐of‐the‐art catalysts for OER in acid. First, the prevailing OER mechanisms are reviewed to establish the physicochemical structure–activity relationships for guiding the design of highly efficient OER electrocatalysts in acid with stable performance. The reported approaches to improve the activity, from macroview to microview, are then discussed. To analyze the problem of instability, the key factors affecting catalyst stability are summarized and the surface reconstruction is discussed. Various noble‐metal‐based OER catalysts and the current progress of non‐noble‐metal‐based catalysts are reviewed. Finally, the challenges and perspectives for the development of active and robust OER catalysts in acid are discussed. Developing proton exchange membrane water electrolyzers requires a fundamental understanding of the oxygen evolution reaction (OER) in acid, which is the primary focus of this review. The water electrolyzer in alkaline and acid are compared; and the recent advances in OER mechanisms, the strategies for enhancing activity and stability of electrocatalysts, surface reconstruction, and the state‐of‐the‐art electrocatalysts are discussed.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202006328