Ionic Liquid-Induced Ostwald Ripening Effect for Efficient and Stable Tin-Based Perovskite Solar Cells
Tin-based perovskite solar cells (PVSCs) are regarded as the most promising alternative among lead-free PVSCs. However, the rapid crystallization for tin-based perovskite tends to cause inferior film morphology and abundant defect states, which make poor photovoltaic performance. Here, 1-butyl-3-met...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-04, Vol.13 (13), p.15420-15428 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tin-based perovskite solar cells (PVSCs) are regarded as the most promising alternative among lead-free PVSCs. However, the rapid crystallization for tin-based perovskite tends to cause inferior film morphology and abundant defect states, which make poor photovoltaic performance. Here, 1-butyl-3-methylimidazolium bromide (BMIBr) ionic liquids (ILs) with strong polarity and a low melting point are first employed to produce the Ostwald ripening effect and obtain high-quality tin-based perovskite films with a large grain size. Meanwhile, the non-radiative recombination ascribed from defect states can also be effectively reduced for BMIBr-treated perovskite films. Consequently, a photoelectric conversion efficiency (PCE) of 10.09% for inverted tin-based PVSCs is attained by the Ostwald ripening effect. Moreover, the unencapsulated devices with BMIBr retain near 85% of the original PCE in a N2 glovebox beyond 1200 h and about 40% of the original PCE after exposure to air for 48 h. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c01408 |