Automatic Aortic Dissection Centerline Extraction Via Morphology-Guided CRN Tracker

Aortic dissection (AD) centerline extraction has important clinical value in the quantitative diagnosis and treatment of AD disease. However, AD centerline extraction is a difficult task and quantitative evaluation is rarely studied. In this work, we propose a fully automatic algorithm to extract AD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-09, Vol.25 (9), p.3473-3485
Hauptverfasser: Zhao, Jingliang, Feng, Qianjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aortic dissection (AD) centerline extraction has important clinical value in the quantitative diagnosis and treatment of AD disease. However, AD centerline extraction is a difficult task and quantitative evaluation is rarely studied. In this work, we propose a fully automatic algorithm to extract AD centerline based on a convolutional regression network (CRN) and the morphological properties of AD. To this end, we first design a topological model to describe the complex topology of AD. With this model, CRNs are trained to estimate the position, tangential vector, and scale of the centerline. The tracking accuracy is further improved by centerline continuity and a gradient-based penalty function. In addition, seed points are extracted on the basis of random regression and line clustering to ensure automated vessel tracking. The proposed method has been evaluated on an AD database and a public aortic database, and achieved high overlapping ratios of 0.9610 and 1.0000, respectively. The tracked centerline is very close to the ground truth and shows good stability, with low average distance errors of 1.4720 mm and 1.8748 mm, respectively.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2021.3068420