Application of Affinity-Capture Self-Interaction Nanoparticle Spectroscopy in Predicting Protein Stability, Especially for Co-Formulated Antibodies

Purpose From traditional monoclonal antibodies to more and more complex mAb-based formulations, biopharmaceutical faces one challenge after another. To avoid these issues, identification of therapeutic proteins in the initial discovery process that has high stability and low self-interaction would s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2021-04, Vol.38 (4), p.721-732
Hauptverfasser: Zhou, Meng, Yan, Zhen, Li, Hao, Liu, Xun, Sun, Piaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose From traditional monoclonal antibodies to more and more complex mAb-based formulations, biopharmaceutical faces one challenge after another. To avoid these issues, identification of therapeutic proteins in the initial discovery process that has high stability and low self-interaction would simplify the development of safe and effective antibody therapeutics. Method Affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) is a new prediction method capable of identifying mAbs with different self-association propensity. In this study, 10 formulated monoclonal antibody (mAb) therapeutics include different mAb isotypes and co-formulated antibodies were measured by AC-SINS and some biophysical methods to predict protein stability. The prediction results of all 10 mAbs were compared to their stability data (Δ%monomer and Δ%HMWs) at accelerated (25°C and 40°C) and long-term storage conditions (4°C) as measured by size exclusion chromatography. Result AC-SINS method has a good predictive correlation with each mAbs and co-formulated antibodies. There were no physicochemical, intermolecular, or biological interactions that occurred between the two components of co-formulated antibodies which confirmed by Analytical ultracentrifugation (AUC). Conclusion Here we discuss the correlation between each method and protein stability, and also use AC-SINS assay to predict the stability of co-formulated antibodies for the first time. This may be an effective way to predict the stability of these complex mAb-based formulations such as co-formulated mAbs.
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-021-03026-8