Boronated Condensed DNA as a Heterochromatic Radiation Target Model
The compound 4-dihydroxyboryl-l-phenylalanine (BPA) has found use in clinical trials of boron neutron capture therapy (BNCT). Here, we have examined the interaction with DNA of an amide-blocked BPA derivative of hexa-l-arginine (Ac-BPA-Arg6-NH2). Physical and spectroscopic assays show that this pept...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2021-04, Vol.22 (4), p.1675-1684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The compound 4-dihydroxyboryl-l-phenylalanine (BPA) has found use in clinical trials of boron neutron capture therapy (BNCT). Here, we have examined the interaction with DNA of an amide-blocked BPA derivative of hexa-l-arginine (Ac-BPA-Arg6-NH2). Physical and spectroscopic assays show that this peptide binds to and condenses DNA. The resulting condensates are highly resistant to the effects of nuclease incubation (68-fold) and gamma (38-fold) irradiation. Radioprotection was modeled by Monte Carlo track structure simulations of DNA single strand breaks (SSBs) with TOPAS-nBio. The differences between experimental and simulated SSB yields for uncondensed and condensed DNAs were ca. 2 and 18%, respectively. These observations indicate that the combination of a plasmid DNA target, the BPA-containing peptide, and track structure simulation provides a powerful approach to characterize DNA damage by the high-LET radiation associated with neutron capture on boron. |
---|---|
ISSN: | 1525-7797 1526-4602 1526-4602 |
DOI: | 10.1021/acs.biomac.1c00106 |