Nonporous Gel Electrolytes Enable Long Cycling at High Current Density for Lithium-Metal Anodes
Lithium-metal anodes with high theoretical capacity and ultralow redox potential are regarded as a “holy grail” of the next-generation energy-storage industry. Nevertheless, Li inevitably reacts with conventional liquid electrolytes, resulting in uneven electrodeposition, unstable solid electrolyte...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-03, Vol.13 (12), p.14258-14266 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-metal anodes with high theoretical capacity and ultralow redox potential are regarded as a “holy grail” of the next-generation energy-storage industry. Nevertheless, Li inevitably reacts with conventional liquid electrolytes, resulting in uneven electrodeposition, unstable solid electrolyte interphase, and Li dendrite formation that all together lead to a decrease in active lithium, poor battery performance, and catastrophic safety hazards. Here, we report a unique nonporous gel polymer electrolyte (NP-GPE) with a uniform and dense structure, exhibiting an excellent combination of mechanical strength, thermal stability, and high ionic conductivity. The nonporous structure contributed to a uniform distribution of lithium ions for dendrite-free lithium deposition, and Li/NP-GPE/Li symmetric cells can maintain an extremely low and stable polarization after cycling at a high current density of 10 mA cm–2. This work provides an insight that the NP-GPE can be considered as a candidate for practical applications for lithium-metal anodes. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c00182 |