Assessment of medication self-administration using artificial intelligence
Errors in medication self-administration (MSA) lead to poor treatment adherence, increased hospitalizations and higher healthcare costs. These errors are particularly common when medication delivery involves devices such as inhalers or insulin pens. We present a contactless and unobtrusive artificia...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2021-04, Vol.27 (4), p.727-735 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Errors in medication self-administration (MSA) lead to poor treatment adherence, increased hospitalizations and higher healthcare costs. These errors are particularly common when medication delivery involves devices such as inhalers or insulin pens. We present a contactless and unobtrusive artificial intelligence (AI) framework that can detect and monitor MSA errors by analyzing the wireless signals in the patient’s home, without the need for physical contact. The system was developed by observing self-administration conducted by volunteers and evaluated by comparing its prediction with human annotations. Findings from this study demonstrate that our approach can automatically detect when patients use their inhalers (area under the curve (AUC) = 0.992) or insulin pens (AUC = 0.967), and assess whether patients follow the appropriate steps for using these devices (AUC = 0.952). The work shows the potential of leveraging AI-based solutions to improve medication safety with minimal overhead for patients and health professionals.
Artificial intelligence coupled with wireless home sensors can monitor the use of insulin pens and inhalers by patients and alert of errors in self-medication in an unobtrusive manner. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/s41591-021-01273-1 |