Cytotoxic Effect of Bromelain on HepG2 Hepatocellular Carcinoma Cell Line
Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of res...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2021-06, Vol.193 (6), p.1873-1897 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and β-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (
Ananas comosus
), belongs to the family Bromeliaceae
.
The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and β-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of β-catenin protein in HepG2 cells which interferes in β-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-021-03505-z |