Asymptotic properties of a family of orthogonal polynomial sequences

It is known that the nth denominators Q n ( a, z) of a real J-fraction of the form ▪ ▪ form an orthogonal polynomial sequence (OPS) with respect to some distribution function ψ( t) on R . In this paper we prove the asymptotic formula ▪ where the convergence is uniform on compact subsets of 0 < ⨍z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1990-11, Vol.32 (1), p.143-151
Hauptverfasser: Jones, William B., Magnus, Arne, McCabe, John H., Wyshinski, Nancy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the nth denominators Q n ( a, z) of a real J-fraction of the form ▪ ▪ form an orthogonal polynomial sequence (OPS) with respect to some distribution function ψ( t) on R . In this paper we prove the asymptotic formula ▪ where the convergence is uniform on compact subsets of 0 < ⨍z⨍ < ∞ and J v ( w) denotes the Bessel function of the first kind of order v. The given proof is based on a separate convergence result for continued fractions and explicit formulae derived for the polynomials Q n ( a, z). Examples include 0F 1( 3 2 ; (16z) −1) = 2√z sinh((2√ which the distribution function ψ( t) is a simple step function with infinitely many jumps.
ISSN:0377-0427
1879-1778
DOI:10.1016/0377-0427(90)90425-Y