Asymptotic properties of a family of orthogonal polynomial sequences
It is known that the nth denominators Q n ( a, z) of a real J-fraction of the form ▪ ▪ form an orthogonal polynomial sequence (OPS) with respect to some distribution function ψ( t) on R . In this paper we prove the asymptotic formula ▪ where the convergence is uniform on compact subsets of 0 < ⨍z...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1990-11, Vol.32 (1), p.143-151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that the
nth denominators
Q
n
(
a,
z) of a real J-fraction of the form
▪
▪ form an orthogonal polynomial sequence (OPS) with respect to some distribution function ψ(
t) on
R
. In this paper we prove the asymptotic formula
▪ where the convergence is uniform on compact subsets of
0 < ⨍z⨍ < ∞ and
J
v
(
w) denotes the Bessel function of the first kind of order
v. The given proof is based on a separate convergence result for continued fractions and explicit formulae derived for the polynomials
Q
n
(
a,
z). Examples include
0F
1(
3
2
; (16z)
−1) = 2√z sinh((2√
which the distribution function ψ(
t) is a simple step function with infinitely many jumps. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(90)90425-Y |