Host–Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces

Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host–guest interaction-mediated photo/temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-03, Vol.13 (12), p.14543-14551
Hauptverfasser: Ni, Yifeng, Zhang, Dong, Wang, Yang, He, Xiaomin, He, Jian, Wu, Huimin, Yuan, Jingfeng, Sha, Dongyong, Che, Lingbin, Tan, Jun, Yang, Jintao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host–guest interaction-mediated photo/temperature dual-controlled antibacterial surface, topologically combining stimuli-responsive polymers with nanobactericide. From the point of view of long-chain polymer design, the peculiar hydration layer generated by hydrophilic poly­(2-hydroxyethyl methacrylate) (polyHEMA) segments severs the route of initial bacterial attachment and subsequent proliferation, while the synergistic effect on chain conformation transformation poly­(N-isopropylacrylamide) (polyNIPAM) and guest complex dissociation azobenzene/cyclodextrin (Azo/CD) complex greatly promotes the on-demand bacterial release in response to the switch of temperature and UV light. Therefore, the resulting surface exhibits triple successive antimicrobial functions simultaneously: (i) resists ∼84.9% of initial bacterial attachment, (ii) kills ∼93.2% of inevitable bacteria attack, and (iii) releases over 94.9% of killed bacteria even after three cycles. The detailed results not only present a potential and promising strategy to develop renewable antibacterial surfaces with successive antimicrobial functions but also contribute a new antimicrobial platform to biomedical or surgical applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c21626