Spooling electrochemiluminescence spectroscopy: development, applications and beyond
One of the most widely used techniques to generate light through an efficient electron transfer is called electrochemiluminescence, or electrogenerated chemiluminescence (ECL). ECL mechanisms can be explored via ‘spooling spectroscopy’ in which individual ECL spectra showing emitted light are collec...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2021-04, Vol.16 (4), p.2109-2130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most widely used techniques to generate light through an efficient electron transfer is called electrochemiluminescence, or electrogenerated chemiluminescence (ECL). ECL mechanisms can be explored via ‘spooling spectroscopy’ in which individual ECL spectra showing emitted light are collected continuously during a potentiodynamic course. The obtained spectra are spooled together and plotted along the applied potential axis; because the potential sweep occurs at a defined rate, this axis is directly proportional to time. Any changes in the emission spectra can be correlated to the corresponding potentials and/or times, leading to a deeper understanding of the mechanism for light generation—information that can be used for efficiently maximizing ECL intensities. The formation of intermediates and excited states can also be tracked, which is crucial to interrogating and drawing electron transfer pathways (i.e., understanding the chemical reaction mechanism). Spooling spectroscopy is not limited to ECL; we also include instructions for the use of related methodologies, such as spooling photoluminescence spectroscopy during an electrolysis procedure, which can be easily set up. The total time required to complete the protocol is ~49 h, from making electrodes and an ECL cell, fabricating light-tight housing, to setting up instruments. Preparing the lab for an individual experiment (making an electrolyte solution of a targeted luminophore, cooling down the CCD camera, calibrating the spectrometer and surveying electrochemistry) takes ~1 h 15 min, and performing the spooling ECL spectroscopy experiment itself requires ~10 min.
In spooling electrochemiluminescence spectroscopy, light emission spectra are continuously recorded during an electrochemical sweep. The formation of luminescent intermediates and products is shown as a function of electrical potential. |
---|---|
ISSN: | 1754-2189 1750-2799 |
DOI: | 10.1038/s41596-020-00486-x |