Blastocyst-like structures generated from human pluripotent stem cells

Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish 1 – 7 . Recent advances in partial embryo models derived from human pluripotent stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-03, Vol.591 (7851), p.620-626
Hauptverfasser: Yu, Leqian, Wei, Yulei, Duan, Jialei, Schmitz, Daniel A., Sakurai, Masahiro, Wang, Lei, Wang, Kunhua, Zhao, Shuhua, Hon, Gary C., Wu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish 1 – 7 . Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages 8 – 14 . However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures—which we term ‘human blastoids’—resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects. An in vitro culture strategy enables the generation of blastocyst-like structures termed human blastoids from naive human pluripotent stem cells, providing a model for studying human embryogenesis.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-03356-y