Motion measurement system of compliant mechanisms using computer micro-vision
Position sensing is essential to testify the validity of the mechanical design and verify the performance in micromanipulation. A practical system for non-contact micro-motion measurement of compliant nanopositioning stages and micromanipulators is proposed using computer micro-vision. The micro-mot...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-02, Vol.29 (4), p.5006-5017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Position sensing is essential to testify the validity of the mechanical design and verify the performance in micromanipulation. A practical system for non-contact micro-motion measurement of compliant nanopositioning stages and micromanipulators is proposed using computer micro-vision. The micro-motion measurement method integrates optical microscopy and an optical flow-based technique, in which the motions of complaint mechanisms are precisely detected and measured. Simulations are carried out to validate the robustness of the proposed method, while the micro-vision system and a laser interferometer measurement system are also built up for a series of experiments. The experimental results demonstrate that the proposed measurement system possesses high stability, extensibility, and precision with 0.06 µm absolute accuracy and 0.05 µm standard deviation. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.415097 |