Bi2O2Se-Based Memristor-Aided Logic

The implementation of two-dimensional materials into memristor architectures has recently been a new research focus by taking advantage of their atomic thickness, unique lattice, and physical and electronic properties. Among the van der Waals family, Bi2O2Se is an emerging ternary two-dimensional la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-04, Vol.13 (13), p.15391-15398
Hauptverfasser: Liu, Bo, Zhao, Yudi, Verma, Dharmendra, Wang, Le An, Liang, Hanyuan, Zhu, Hui, Li, Lain-Jong, Hou, Tuo-Hung, Lai, Chao-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of two-dimensional materials into memristor architectures has recently been a new research focus by taking advantage of their atomic thickness, unique lattice, and physical and electronic properties. Among the van der Waals family, Bi2O2Se is an emerging ternary two-dimensional layered material with ambient stability, suitable band structure, and high conductivity that exhibits high potential for use in electronic applications. In this work, we propose and experimentally demonstrate a Bi2O2Se-based memristor-aided logic. By carefully tuning the electric field polarity of Bi2O2Se through a Pd contact, a reconfigurable NAND gate with zero static power consumption is realized. To provide more knowledge on NAND operation, a kinetic Monte Carlo simulation is carried out. Because the NAND gate is a universal logic gate, cascading additional NAND gates can exhibit versatile logic functions. Therefore, the proposed Bi2O2Se-based MAGIC can be a promising building block for developing next-generation in-memory logic computers with multiple functions.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c00177