Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method

•Deep model-based magnetic resonance (MR) parameter mapping network (DOPAMINE).•Mapping network estimates initial parameter maps from undersampled k-space data.•Reconstruction network removes artifacts with model-based data consistency layer.•Performance of DOPAMINE is demonstrated with variable fli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2021-05, Vol.70, p.102017-102017, Article 102017
Hauptverfasser: Jun, Yohan, Shin, Hyungseob, Eo, Taejoon, Kim, Taeseong, Hwang, Dosik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Deep model-based magnetic resonance (MR) parameter mapping network (DOPAMINE).•Mapping network estimates initial parameter maps from undersampled k-space data.•Reconstruction network removes artifacts with model-based data consistency layer.•Performance of DOPAMINE is demonstrated with variable flip angle mapping model.•With DOPAMINE, scan time of quantitative MR parameter mapping can be reduced. [Display omitted] Quantitative tissue characteristics, which provide valuable diagnostic information, can be represented by magnetic resonance (MR) parameter maps using magnetic resonance imaging (MRI); however, a long scan time is necessary to acquire them, which prevents the application of quantitative MR parameter mapping to real clinical protocols. For fast MR parameter mapping, we propose a deep model-based MR parameter mapping network called DOPAMINE that combines a deep learning network with a model-based method to reconstruct MR parameter maps from undersampled multi-channel k-space data. DOPAMINE consists of two networks: 1) an MR parameter mapping network that uses a deep convolutional neural network (CNN) that estimates initial parameter maps from undersampled k-space data (CNN-based mapping), and 2) a reconstruction network that removes aliasing artifacts in the parameter maps with a deep CNN (CNN-based reconstruction) and an interleaved data consistency layer by an embedded MR model-based optimization procedure. We demonstrated the performance of DOPAMINE in brain T1 map reconstruction with a variable flip angle (VFA) model. To evaluate the performance of DOPAMINE, we compared it with conventional parallel imaging, low-rank based reconstruction, model-based reconstruction, and state-of-the-art deep-learning-based mapping methods for three different reduction factors (R = 3, 5, and 7) and two different sampling patterns (1D Cartesian and 2D Poisson-disk). Quantitative metrics indicated that DOPAMINE outperformed other methods in reconstructing T1 maps for all sampling patterns and reduction factors. DOPAMINE exhibited quantitatively and qualitatively superior performance to that of conventional methods in reconstructing MR parameter maps from undersampled multi-channel k-space data. The proposed method can thus reduce the scan time of quantitative MR parameter mapping that uses a VFA model.
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2021.102017