Simulation of the effect of vibrational pre-excitation on the dynamics of pyrrole photo-dissociation
Photo-dissociation dynamics is simulated for vibrationally pre-excited pyrrole molecules using an ab initio multiple cloning approach. Total kinetic energy release (TKER) spectra and dissociation times are calculated. It is found that pre-excitation of N–H bond vibrations facilitates fast direct dis...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-03, Vol.154 (10), p.104119-104119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photo-dissociation dynamics is simulated for vibrationally pre-excited pyrrole molecules using an ab initio multiple cloning approach. Total kinetic energy release (TKER) spectra and dissociation times are calculated. It is found that pre-excitation of N–H bond vibrations facilitates fast direct dissociation, which results in a significant increase in the high-energy wing of TKER spectra. The results are in very good agreement with the recent vibrationally mediated photo-dissociation experiment, where the TKER spectrum was measured for pyrrole molecules excited by a combination of IR and UV laser pulses. Calculations for other vibrational modes show that this effect is specific for N–H bond vibrations: Pre-excitation of other modes does not result in any significant changes in TKER spectra. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0040178 |