Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites
Determine the degree of conversion (DC) and in vitro pulpal temperature (PT) rise of low-viscosity (LV) and high-viscosity (HV) conventional resin-based composites (RBC), bulk-fill and short-fibre reinforced composites (SFRC). The occlusal surface of a mandibular molar was removed to obtain dentine...
Gespeichert in:
Veröffentlicht in: | Dental materials 2021-06, Vol.37 (6), p.983-997 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determine the degree of conversion (DC) and in vitro pulpal temperature (PT) rise of low-viscosity (LV) and high-viscosity (HV) conventional resin-based composites (RBC), bulk-fill and short-fibre reinforced composites (SFRC).
The occlusal surface of a mandibular molar was removed to obtain dentine thickness of 2 mm above the roof of the pulp chamber. LV and HV conventional (2 mm), bulk-fill RBCs (2–4 mm) and SFRCs (2–4 mm) were applied in a mold (6 mm inner diameter) placed on the occlusal surface. PT changes during the photo-polymerization were recorded with a thermocouple positioned in the pulp chamber. The DC at the top and bottom of the samples was measured with micro-Raman spectroscopy. ANOVA and Tukey’s post-hoc test, multivariate analysis and partial eta-squared statistics were used to analyze the data (p < 0.05).
The PT changes ranged between 5.5–11.2 °C. All LV and 4 mm RBCs exhibited higher temperature changes. Higher DC were measured at the top (63–76%) of the samples as compared to the bottom (52–72.6%) in the 2 mm HV conventional and bulk-fill RBCs and in each 4 mm LV and HV materials. The SFRCs showed higher temperature changes and DC% as compared to the other investigated RBCs. The temperature and DC were influenced by the composition of the material followed by the thickness.
Exothermic temperature rise and DC are mainly material dependent. Higher DC values are associated with a significant increase in PT. LV RBCs, 4 mm bulk-fills and SFRCs exhibited higher PTs. Bulk-fills and SFRCs applied in 4 mm showed lower DCs at the bottom. |
---|---|
ISSN: | 0109-5641 1879-0097 |
DOI: | 10.1016/j.dental.2021.02.013 |