Tip‐Induced Nano‐Engineering of Strain, Bandgap, and Exciton Funneling in 2D Semiconductors
The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain‐engineerin...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-04, Vol.33 (17), p.e2008234-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain‐engineering approaches have enabled to tune some of these properties, yet dynamic control at the nanoscale with real‐time and ‐space characterizations remains a challenge. Here, a dynamic nano‐mechanical strain‐engineering of naturally‐formed wrinkles in a WSe2 monolayer, with real‐time investigation of nano‐spectroscopic properties is demonstrated using hyperspectral adaptive tip‐enhanced PL (a‐TEPL) spectroscopy. First, nanoscale wrinkles are characterized through hyperspectral a‐TEPL nano‐imaging with |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202008234 |