Tip‐Induced Nano‐Engineering of Strain, Bandgap, and Exciton Funneling in 2D Semiconductors

The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain‐engineerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-04, Vol.33 (17), p.e2008234-n/a
Hauptverfasser: Koo, Yeonjeong, Kim, Yongchul, Choi, Soo Ho, Lee, Hyeongwoo, Choi, Jinseong, Lee, Dong Yun, Kang, Mingu, Lee, Hyun Seok, Kim, Ki Kang, Lee, Geunsik, Park, Kyoung‐Duck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain‐engineering approaches have enabled to tune some of these properties, yet dynamic control at the nanoscale with real‐time and ‐space characterizations remains a challenge. Here, a dynamic nano‐mechanical strain‐engineering of naturally‐formed wrinkles in a WSe2 monolayer, with real‐time investigation of nano‐spectroscopic properties is demonstrated using hyperspectral adaptive tip‐enhanced PL (a‐TEPL) spectroscopy. First, nanoscale wrinkles are characterized through hyperspectral a‐TEPL nano‐imaging with
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202008234