Study of a cesium plasma as a selective emitter for thermophotovoltaic applications

This experimental study evaluates the potential of a cesium plasma as an emitter for a thermophotovoltaic (TPV) energy conversion system. A cesium plasma, as a result of the ground-state transitions of its single outer-shell electron, produces large amounts of radiation in the 850-890-nm wavelength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1990-11, Vol.68 (10), p.5033-5035
Hauptverfasser: Lowe, R., Goradia, C., Goradia, M., Chubb, Donald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This experimental study evaluates the potential of a cesium plasma as an emitter for a thermophotovoltaic (TPV) energy conversion system. A cesium plasma, as a result of the ground-state transitions of its single outer-shell electron, produces large amounts of radiation in the 850-890-nm wavelength region. This would provide excellent coupling to silicon, gallium arsenide, and indium phosphide photovoltaic cells. Measurements of the radiative efficiency, the sum of the power at the 852 and 894 nm wavelengths relative to the total emitted power, were made and correlated to the plasma operating variables. It was determined that, for atomic density in the range (3-6) x 10 exp 21/cu cm and electron temperature in the range 2000-3000 K, radiative efficiencies in excess of 70 percent are attainable. This would indicate that a cesium plasma with its selective emission characteristics and low electron operating temperatures of 2000-3000 K would be an excellent candidate as an emitter in a TPV system.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.347090