Three-dimensional deeply generated holography [Invited]

In this paper, we present a noniterative method for 3D computer-generated holography based on deep learning. A convolutional neural network is adapted for directly generating a hologram to reproduce a 3D intensity pattern in a given class. We experimentally demonstrated the proposed method with opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-02, Vol.60 (4), p.A323-A328
Hauptverfasser: Horisaki, Ryoichi, Nishizaki, Yohei, Kitaguchi, Katsuhisa, Saito, Mamoru, Tanida, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a noniterative method for 3D computer-generated holography based on deep learning. A convolutional neural network is adapted for directly generating a hologram to reproduce a 3D intensity pattern in a given class. We experimentally demonstrated the proposed method with optical reproductions of multiple layers based on phase-only Fourier holography. Our method is noniterative, but it achieves a reproduction quality comparable with that of iterative methods for a given class.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/ao.404151