Spinal stretch reflexes support efficient control of reaching
Efficiently controlling the movement of our hand requires coordinating the motion of multiple joints of the arm. Although it is widely assumed that this type of efficient control is implemented by processing that occurs in the cerebral cortex and brainstem, recent work has shown that spinal circuits...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2021-04, Vol.125 (4), p.1339-1347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficiently controlling the movement of our hand requires coordinating the motion of multiple joints of the arm. Although it is widely assumed that this type of efficient control is implemented by processing that occurs in the cerebral cortex and brainstem, recent work has shown that spinal circuits can generate efficient motor output that supports keeping the hand in a static location. Here, we show that a spinal pathway can also efficiently control the hand during reaching. In our first experiment, we applied multijoint mechanical perturbations to participants' elbow and wrist as they began reaching toward a target. We found that spinal stretch reflexes evoked in elbow muscles were not proportional to how much the elbow muscles were stretched but instead were dependent on the hand's location relative to the target. In our second experiment, we applied the same elbow and wrist perturbations but had participants change how they grasped the manipulandum, diametrically altering how the same wrist perturbation moved the hand relative to the reach target. We found that changing the arm's orientation diametrically altered how spinal reflexes in the elbow muscles were evoked, and in such a way that were again dependent on the hand's location relative to the target. These findings demonstrate that spinal circuits can help efficiently control the hand during dynamic reaching actions and show that efficient and flexible motor control is not exclusively dependent on processing that occurs within supraspinal regions of the nervous system.
We have previously shown that spinal circuits can rapidly generate reflex responses that efficiently engage multiple joints to support postural hand control of the upper limb. Here, we show that spinal circuits can also rapidly generate such efficient responses during reaching actions. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00487.2020 |