Spatio-temporal network analysis of pig trade to inform the design of risk-based disease surveillance
•Social network analysis was used to characterize the dynamics of pig trade.•Static representations of this trade in Brazil over-represent the network’s connectivity.•Temporal representations of the network were used to targeted farms to implement control actions.•A novel network-based risk index wa...
Gespeichert in:
Veröffentlicht in: | Preventive veterinary medicine 2021-04, Vol.189, p.105314-105314, Article 105314 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Social network analysis was used to characterize the dynamics of pig trade.•Static representations of this trade in Brazil over-represent the network’s connectivity.•Temporal representations of the network were used to targeted farms to implement control actions.•A novel network-based risk index was proposed to rank geographic areas to guides surveillance activities.
Network analysis is a powerful tool to describe, estimate, and predict the role of pig trade in the spread of pathogens and generate essential patterns that can be used to understand, prevent, and mitigate possible outbreaks. This study aimed to describe the network between premises such as production herds, slaughterhouses, and traders of pig movements and identify heterogeneities in the connectivity of premises in the state of Santa Catarina, Brazil, using social network analysis (SNA). We used static and temporal network approaches to describe pig trade in the state by quantifying network attributes using SNA parameters, such as causal fidelity, loyalty, the proportion of node-loyalty, resilience of outgoing contact chains, and communities. Two indexes were implemented, the first one is a normalized index based on SNA-farm level measures and other index-based SNA-farm level measures considering the swineherd population size from all premises, both indexes were summarized by a municipality to target and rank surveillance activities. Within Santa Catarina, the southwest region played a key role in that 80 % of trade was concentrated in this region, and thus acted as a hub in the network. Besides, nine communities were found. The results also showed that premises were highly connected in the static network, with the network exhibiting low levels of fragmentation and loyalty. Also, just 11 % of the paths in the static network existed in the temporal network which accounted for the order in which edges occurred. Therefore, the use of time-respecting-paths was essential to not overestimate potential transmission pathways and outbreak sizes. Compared to static networks, the application of temporal network approaches was more suitable to capture the dynamics of pig trade and should be used to inform the design of riskbased disease surveillance. |
---|---|
ISSN: | 0167-5877 1873-1716 |
DOI: | 10.1016/j.prevetmed.2021.105314 |