Autonomous decision-making: a data mining approach

The researchers and practitioners of today create models, algorithms, functions, and other constructs defined in abstract spaces. The research of the future will likely be data driven. Symbolic and numeric data that are becoming available in large volumes will define the need for new data analysis t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2000-12, Vol.4 (4), p.274-284
Hauptverfasser: Kusiak, A., Kern, J.A., Kernstine, K.H., Tseng, B.T.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The researchers and practitioners of today create models, algorithms, functions, and other constructs defined in abstract spaces. The research of the future will likely be data driven. Symbolic and numeric data that are becoming available in large volumes will define the need for new data analysis techniques and tools. Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. In this paper, a novel approach for autonomous decision-making is developed based on the rough set theory of data mining. The approach has been tested on a medical data set for patients with lung abnormalities referred to as solitary pulmonary nodules (SPNs). The two independent algorithms developed in this paper either generate an accurate diagnosis or make no decision. The methodology discussed in the paper depart from the developments in data mining as well as current medical literature, thus creating a variable approach for autonomous decision-making.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/4233.897059