Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries

All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-07, Vol.20 (7), p.984-990
Hauptverfasser: Xiao, Yiran, Turcheniuk, Kostiantyn, Narla, Aashray, Song, Ah-Young, Ren, Xiaolei, Magasinski, Alexandre, Jain, Ayush, Huang, Shirley, Lee, Haewon, Yushin, Gleb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 7
container_start_page 984
container_title Nature materials
container_volume 20
creator Xiao, Yiran
Turcheniuk, Kostiantyn
Narla, Aashray
Song, Ah-Young
Ren, Xiaolei
Magasinski, Alexandre
Jain, Ayush
Huang, Shirley
Lee, Haewon
Yushin, Gleb
description All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathodes and both Li 4 Ti 5 O 12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation. All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.
doi_str_mv 10.1038/s41563-021-00943-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499389349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2C__gAsziRs3WL5hlqap1qSJm7omZxioVGa4ArPovy-396qJC1eQ8JyHk_dF6C0lHynh5rIKKhXHhFFMyCg4Zi_QKRVaYaEUeXm8U8rYCTqr9YF0Ukr1Gp1wroxiWp2in9fJu1Zyemx-WHxqQ1xDTK1Ai3kdQi5DdZBgSv0Z1i2Aa1uJ6_2QQ0dzuYc1ugFSwjWnOOPaoJtSbD_ituC9Y4LWfIm-XqBXAVL1b47nOfr--fru6gbffvvy9erTLXZcy4aDkTKEadLKj9oEaQT0tacwSzUHoDBrxjQFP85aKAeTAQNOqqAID14bwc_Rh4N3V_Kvzddml1idTwlWn7dqmRhHbkYuxo6-_wd9yFtZ-3aWSaH4OCpJOsUOlCu51uKD3ZW4QHm0lNh9FfZQhe0B2-cqLOtD747qbVr8_Gfkd_Yd4Aeg7vaB-vL37_9onwCtGJZh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399650</pqid></control><display><type>article</type><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</creator><creatorcontrib>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</creatorcontrib><description>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathodes and both Li 4 Ti 5 O 12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation. All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00943-2</identifier><identifier>PMID: 33686276</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/301/357/551 ; Additives ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electric cells ; Electric vehicles ; Electrodes ; Electrolytes ; Electrolytic cells ; Energy costs ; Energy efficiency ; Fabrication ; Flux density ; High temperature ; Industrial safety ; Infiltration ; Lithium ; Lithium-ion batteries ; Manufacturing ; Materials Science ; Melting point ; Melting points ; Molten salt electrolytes ; Nanotechnology ; Optical and Electronic Materials ; Production costs ; Rechargeable batteries ; Sintering ; Solid electrolytes ; Solid state ; Thermal stability</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.984-990</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</citedby><cites>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</cites><orcidid>0000-0002-3274-9265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00943-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00943-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yiran</creatorcontrib><creatorcontrib>Turcheniuk, Kostiantyn</creatorcontrib><creatorcontrib>Narla, Aashray</creatorcontrib><creatorcontrib>Song, Ah-Young</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Magasinski, Alexandre</creatorcontrib><creatorcontrib>Jain, Ayush</creatorcontrib><creatorcontrib>Huang, Shirley</creatorcontrib><creatorcontrib>Lee, Haewon</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathodes and both Li 4 Ti 5 O 12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation. All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</description><subject>639/301/299/891</subject><subject>639/301/357/551</subject><subject>Additives</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electric cells</subject><subject>Electric vehicles</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>High temperature</subject><subject>Industrial safety</subject><subject>Infiltration</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Production costs</subject><subject>Rechargeable batteries</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thermal stability</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vFSEUhonR2C__gAsziRs3WL5hlqap1qSJm7omZxioVGa4ArPovy-396qJC1eQ8JyHk_dF6C0lHynh5rIKKhXHhFFMyCg4Zi_QKRVaYaEUeXm8U8rYCTqr9YF0Ukr1Gp1wroxiWp2in9fJu1Zyemx-WHxqQ1xDTK1Ai3kdQi5DdZBgSv0Z1i2Aa1uJ6_2QQ0dzuYc1ugFSwjWnOOPaoJtSbD_ituC9Y4LWfIm-XqBXAVL1b47nOfr--fru6gbffvvy9erTLXZcy4aDkTKEadLKj9oEaQT0tacwSzUHoDBrxjQFP85aKAeTAQNOqqAID14bwc_Rh4N3V_Kvzddml1idTwlWn7dqmRhHbkYuxo6-_wd9yFtZ-3aWSaH4OCpJOsUOlCu51uKD3ZW4QHm0lNh9FfZQhe0B2-cqLOtD747qbVr8_Gfkd_Yd4Aeg7vaB-vL37_9onwCtGJZh</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xiao, Yiran</creator><creator>Turcheniuk, Kostiantyn</creator><creator>Narla, Aashray</creator><creator>Song, Ah-Young</creator><creator>Ren, Xiaolei</creator><creator>Magasinski, Alexandre</creator><creator>Jain, Ayush</creator><creator>Huang, Shirley</creator><creator>Lee, Haewon</creator><creator>Yushin, Gleb</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3274-9265</orcidid></search><sort><creationdate>20210701</creationdate><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><author>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/891</topic><topic>639/301/357/551</topic><topic>Additives</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electric cells</topic><topic>Electric vehicles</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>High temperature</topic><topic>Industrial safety</topic><topic>Infiltration</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Production costs</topic><topic>Rechargeable batteries</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yiran</creatorcontrib><creatorcontrib>Turcheniuk, Kostiantyn</creatorcontrib><creatorcontrib>Narla, Aashray</creatorcontrib><creatorcontrib>Song, Ah-Young</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Magasinski, Alexandre</creatorcontrib><creatorcontrib>Jain, Ayush</creatorcontrib><creatorcontrib>Huang, Shirley</creatorcontrib><creatorcontrib>Lee, Haewon</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yiran</au><au>Turcheniuk, Kostiantyn</au><au>Narla, Aashray</au><au>Song, Ah-Young</au><au>Ren, Xiaolei</au><au>Magasinski, Alexandre</au><au>Jain, Ayush</au><au>Huang, Shirley</au><au>Lee, Haewon</au><au>Yushin, Gleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>984</spage><epage>990</epage><pages>984-990</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathodes and both Li 4 Ti 5 O 12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation. All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33686276</pmid><doi>10.1038/s41563-021-00943-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3274-9265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-07, Vol.20 (7), p.984-990
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2499389349
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/299/891
639/301/357/551
Additives
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electric cells
Electric vehicles
Electrodes
Electrolytes
Electrolytic cells
Energy costs
Energy efficiency
Fabrication
Flux density
High temperature
Industrial safety
Infiltration
Lithium
Lithium-ion batteries
Manufacturing
Materials Science
Melting point
Melting points
Molten salt electrolytes
Nanotechnology
Optical and Electronic Materials
Production costs
Rechargeable batteries
Sintering
Solid electrolytes
Solid state
Thermal stability
title Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20melt%20infiltration%20for%20scalable%20manufacturing%20of%20inorganic%20all-solid-state%20lithium-ion%20batteries&rft.jtitle=Nature%20materials&rft.au=Xiao,%20Yiran&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=984&rft.epage=990&rft.pages=984-990&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00943-2&rft_dat=%3Cproquest_cross%3E2546399650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399650&rft_id=info:pmid/33686276&rfr_iscdi=true