Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries
All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electro...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-07, Vol.20 (7), p.984-990 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 7 |
container_start_page | 984 |
container_title | Nature materials |
container_volume | 20 |
creator | Xiao, Yiran Turcheniuk, Kostiantyn Narla, Aashray Song, Ah-Young Ren, Xiaolei Magasinski, Alexandre Jain, Ayush Huang, Shirley Lee, Haewon Yushin, Gleb |
description | All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi
0.33
Mn
0.33
Co
0.33
O
2
cathodes and both Li
4
Ti
5
O
12
and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed. |
doi_str_mv | 10.1038/s41563-021-00943-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499389349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2C__gAsziRs3WL5hlqap1qSJm7omZxioVGa4ArPovy-396qJC1eQ8JyHk_dF6C0lHynh5rIKKhXHhFFMyCg4Zi_QKRVaYaEUeXm8U8rYCTqr9YF0Ukr1Gp1wroxiWp2in9fJu1Zyemx-WHxqQ1xDTK1Ai3kdQi5DdZBgSv0Z1i2Aa1uJ6_2QQ0dzuYc1ugFSwjWnOOPaoJtSbD_ituC9Y4LWfIm-XqBXAVL1b47nOfr--fru6gbffvvy9erTLXZcy4aDkTKEadLKj9oEaQT0tacwSzUHoDBrxjQFP85aKAeTAQNOqqAID14bwc_Rh4N3V_Kvzddml1idTwlWn7dqmRhHbkYuxo6-_wd9yFtZ-3aWSaH4OCpJOsUOlCu51uKD3ZW4QHm0lNh9FfZQhe0B2-cqLOtD747qbVr8_Gfkd_Yd4Aeg7vaB-vL37_9onwCtGJZh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399650</pqid></control><display><type>article</type><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</creator><creatorcontrib>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</creatorcontrib><description>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi
0.33
Mn
0.33
Co
0.33
O
2
cathodes and both Li
4
Ti
5
O
12
and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00943-2</identifier><identifier>PMID: 33686276</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/301/357/551 ; Additives ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electric cells ; Electric vehicles ; Electrodes ; Electrolytes ; Electrolytic cells ; Energy costs ; Energy efficiency ; Fabrication ; Flux density ; High temperature ; Industrial safety ; Infiltration ; Lithium ; Lithium-ion batteries ; Manufacturing ; Materials Science ; Melting point ; Melting points ; Molten salt electrolytes ; Nanotechnology ; Optical and Electronic Materials ; Production costs ; Rechargeable batteries ; Sintering ; Solid electrolytes ; Solid state ; Thermal stability</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.984-990</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</citedby><cites>FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</cites><orcidid>0000-0002-3274-9265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00943-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00943-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yiran</creatorcontrib><creatorcontrib>Turcheniuk, Kostiantyn</creatorcontrib><creatorcontrib>Narla, Aashray</creatorcontrib><creatorcontrib>Song, Ah-Young</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Magasinski, Alexandre</creatorcontrib><creatorcontrib>Jain, Ayush</creatorcontrib><creatorcontrib>Huang, Shirley</creatorcontrib><creatorcontrib>Lee, Haewon</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi
0.33
Mn
0.33
Co
0.33
O
2
cathodes and both Li
4
Ti
5
O
12
and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</description><subject>639/301/299/891</subject><subject>639/301/357/551</subject><subject>Additives</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electric cells</subject><subject>Electric vehicles</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>High temperature</subject><subject>Industrial safety</subject><subject>Infiltration</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Production costs</subject><subject>Rechargeable batteries</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thermal stability</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vFSEUhonR2C__gAsziRs3WL5hlqap1qSJm7omZxioVGa4ArPovy-396qJC1eQ8JyHk_dF6C0lHynh5rIKKhXHhFFMyCg4Zi_QKRVaYaEUeXm8U8rYCTqr9YF0Ukr1Gp1wroxiWp2in9fJu1Zyemx-WHxqQ1xDTK1Ai3kdQi5DdZBgSv0Z1i2Aa1uJ6_2QQ0dzuYc1ugFSwjWnOOPaoJtSbD_ituC9Y4LWfIm-XqBXAVL1b47nOfr--fru6gbffvvy9erTLXZcy4aDkTKEadLKj9oEaQT0tacwSzUHoDBrxjQFP85aKAeTAQNOqqAID14bwc_Rh4N3V_Kvzddml1idTwlWn7dqmRhHbkYuxo6-_wd9yFtZ-3aWSaH4OCpJOsUOlCu51uKD3ZW4QHm0lNh9FfZQhe0B2-cqLOtD747qbVr8_Gfkd_Yd4Aeg7vaB-vL37_9onwCtGJZh</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xiao, Yiran</creator><creator>Turcheniuk, Kostiantyn</creator><creator>Narla, Aashray</creator><creator>Song, Ah-Young</creator><creator>Ren, Xiaolei</creator><creator>Magasinski, Alexandre</creator><creator>Jain, Ayush</creator><creator>Huang, Shirley</creator><creator>Lee, Haewon</creator><creator>Yushin, Gleb</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3274-9265</orcidid></search><sort><creationdate>20210701</creationdate><title>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</title><author>Xiao, Yiran ; Turcheniuk, Kostiantyn ; Narla, Aashray ; Song, Ah-Young ; Ren, Xiaolei ; Magasinski, Alexandre ; Jain, Ayush ; Huang, Shirley ; Lee, Haewon ; Yushin, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f855ffbb76e978f584a155bfd56dfa1ad72271ae9d746cab8a8ac56f603fe7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/891</topic><topic>639/301/357/551</topic><topic>Additives</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electric cells</topic><topic>Electric vehicles</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>High temperature</topic><topic>Industrial safety</topic><topic>Infiltration</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Production costs</topic><topic>Rechargeable batteries</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yiran</creatorcontrib><creatorcontrib>Turcheniuk, Kostiantyn</creatorcontrib><creatorcontrib>Narla, Aashray</creatorcontrib><creatorcontrib>Song, Ah-Young</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Magasinski, Alexandre</creatorcontrib><creatorcontrib>Jain, Ayush</creatorcontrib><creatorcontrib>Huang, Shirley</creatorcontrib><creatorcontrib>Lee, Haewon</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yiran</au><au>Turcheniuk, Kostiantyn</au><au>Narla, Aashray</au><au>Song, Ah-Young</au><au>Ren, Xiaolei</au><au>Magasinski, Alexandre</au><au>Jain, Ayush</au><au>Huang, Shirley</au><au>Lee, Haewon</au><au>Yushin, Gleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>984</spage><epage>990</epage><pages>984-990</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi
0.33
Mn
0.33
Co
0.33
O
2
cathodes and both Li
4
Ti
5
O
12
and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
All-solid-state lithium-ion batteries provide improved safety but typically suffer from high cost and low volumetric energy density. An electrolyte melt-infiltration approach offering reduced manufacturing costs and improved volumetric energy density in all solid cells is proposed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33686276</pmid><doi>10.1038/s41563-021-00943-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3274-9265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-07, Vol.20 (7), p.984-990 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2499389349 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/301/299/891 639/301/357/551 Additives Biomaterials Chemistry and Materials Science Condensed Matter Physics Electric cells Electric vehicles Electrodes Electrolytes Electrolytic cells Energy costs Energy efficiency Fabrication Flux density High temperature Industrial safety Infiltration Lithium Lithium-ion batteries Manufacturing Materials Science Melting point Melting points Molten salt electrolytes Nanotechnology Optical and Electronic Materials Production costs Rechargeable batteries Sintering Solid electrolytes Solid state Thermal stability |
title | Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20melt%20infiltration%20for%20scalable%20manufacturing%20of%20inorganic%20all-solid-state%20lithium-ion%20batteries&rft.jtitle=Nature%20materials&rft.au=Xiao,%20Yiran&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=984&rft.epage=990&rft.pages=984-990&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00943-2&rft_dat=%3Cproquest_cross%3E2546399650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399650&rft_id=info:pmid/33686276&rfr_iscdi=true |