Universal Theory of Dynamic Force Microscopy for Exact and Robust Force Reconstruction Using Multiharmonic Signal Analysis
Force reconstruction in dynamic force microscopy (DFM) is a nontrivial problem that requires the deconvolution of integrals. However, conventional reconstruction methods, which recover forces from single-frequency motion of the cantilever at its resonance, exhibit non-negligible error and reconstruc...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-02, Vol.126 (7), p.076804-076804, Article 076804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Force reconstruction in dynamic force microscopy (DFM) is a nontrivial problem that requires the deconvolution of integrals. However, conventional reconstruction methods, which recover forces from single-frequency motion of the cantilever at its resonance, exhibit non-negligible error and reconstruction instability in the highly nonlinear force regime when the tip oscillates with its amplitude comparable to the decay length of the interaction. Here, we develop a theoretical platform of DFM based on multiharmonic signal analysis for exact and robust reconstruction of conservative and dissipative forces, valid for all oscillation amplitudes and entire tip-sample distances in both amplitude- and frequency-modulation atomic force microscopy. We achieve accuracy improvement by an order of magnitude for oscillation amplitudes comparable to or larger than the decay length, and by 2 orders of magnitude for smaller amplitudes at the force minimum, even in cases where conventional methods show poor accuracy (≳5%). Moreover, we obtain greater robustness with respect to the oscillation amplitude error, resulting in a fivefold increase in reconstruction precision. Our results demonstrate a fast and versatile reconstruction scheme for nanomechanical force characterization, with higher harmonics measured with sufficient signal-to-noise ratio, which provides unprecedented accuracy and stability beyond conventional methods. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.076804 |