An Outline of the Outset of Thrombopoiesis in Human Embryos At Last
By single-cell transcriptome profiling of human yolk sacs and fetal livers, Wang et al. (2021) (in this issue of Cell Stem Cell) track two alternative routes for differentiation of megakaryocytes. The authors have shown that these megakaryocytes have hemostatic- and HSC-supporting functions, and tha...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2021-03, Vol.28 (3), p.363-365 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By single-cell transcriptome profiling of human yolk sacs and fetal livers, Wang et al. (2021) (in this issue of Cell Stem Cell) track two alternative routes for differentiation of megakaryocytes. The authors have shown that these megakaryocytes have hemostatic- and HSC-supporting functions, and that hESC-derived thrombospondin1-positive endothelial cells are capable of generating megakaryocytes in vitro.
By single-cell transcriptome profiling of human yolk sacs and fetal livers, Wang et al. (2021) (in this issue of Cell Stem Cell) track two alternative routes for differentiation of megakaryocytes. The authors have shown that these megakaryocytes have hemostatic- and HSC-supporting functions, and that hESC-derived thrombospondin1-positive endothelial cells are capable of generating megakaryocytes in vitro. |
---|---|
ISSN: | 1934-5909 1875-9777 |
DOI: | 10.1016/j.stem.2021.02.007 |