On-farm detection of claw lesions in dairy cows based on acoustic analyses and machine learning
Claw lesions are a serious problem on dairy farms, affecting both the health and welfare of the cow. Automated detection of lameness with a practical, on-farm application would support the early detection and treatment of lame cows, potentially reducing the number and severity of claw lesions. There...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2021-05, Vol.104 (5), p.5921-5931 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Claw lesions are a serious problem on dairy farms, affecting both the health and welfare of the cow. Automated detection of lameness with a practical, on-farm application would support the early detection and treatment of lame cows, potentially reducing the number and severity of claw lesions. Therefore, in this study, a method was proposed for the detection of claw lesions based on the acoustic analysis of a cow's gait. A panel was constructed to measure the impact sound of animals walking over it. The recorded impact sound was edited, and 640 sound files from 64 cows were analyzed. The classification of animal-lameness status was performed using a machine-learning process with a random forest algorithm. The gold standard was a 2-point scale of hoof-trimming results (healthy vs. affected), and 38 properties of the recorded sound files were used as influencing factors. A prediction model for classifying the cow lameness was built using a random forest algorithm. This was validated by comparing the reference output from hoof-trimming with the model output concerning the impact sound. Altering the likelihood settings and changing the cutoff value to predict lame animals improved the prediction model. At a cutoff at 0.4, a decreased false-negative rate was generated, and the false-positive rate only increased slightly. This model obtained a sensitivity of 0.81 and a specificity of 0.97. With this procedure, Cohen's Kappa value of 0.80 showed good agreement between model classification and diagnoses from hoof-trimming. In summary, the prediction model enabled the detection of cows with claw lesions. This study shows that lameness can be detected by machine learning from the impact sound of hoofs in dairy cows. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2020-19206 |