Gut Microbiota in Cancer Immune Response and Immunotherapy
The gastrointestinal tract (GIT) is the largest immune organ and maintains systemic immune homeostasis in the presence of bacterial challenge. Immune elimination and immune escape are hallmarks of cancer, both of which can be partly bacteria dependent in shaping immunity by mediating host immunomodu...
Gespeichert in:
Veröffentlicht in: | Trends in Cancer 2021-07, Vol.7 (7), p.647-660 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gastrointestinal tract (GIT) is the largest immune organ and maintains systemic immune homeostasis in the presence of bacterial challenge. Immune elimination and immune escape are hallmarks of cancer, both of which can be partly bacteria dependent in shaping immunity by mediating host immunomodulation. In addition, host immunity regulates the microbiome by altering bacteria-associated signaling to influence tumor surveillance. Cancer immunotherapy, including immune checkpoint blockade (ICB), appears to have heterogeneous therapeutic effects in different individuals, partially attributed to the microbiota. Thus, the microbiome signature can predict clinical outcomes, prognosis, and immunotherapy responses. In this review, we summarize the intricate crosstalk among the gut microbiome, cancer immune response, and immunotherapy. Interactive modulation of the host microbiota provides new therapeutic strategies to promote anticancer therapy efficacy and/or reduce toxicity. |
---|---|
ISSN: | 2405-8033 2405-8025 |
DOI: | 10.1016/j.trecan.2021.01.010 |