Characterization of organic aerosols in PM1 and their cytotoxicity in an urban roadside area in Hong Kong

Organic compounds in fine particles play major roles in cardiopulmonary diseases. A study was conducted to determine the characteristics and cytotoxicity of organic aerosols (OA) in an urban roadside area in Hong Kong. Chemical components in nonrefractory submicron aerosol (NR-PM1) were observed usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-01, Vol.263, p.128239, Article 128239
Hauptverfasser: Niu, Xinyi, Wang, Yichen, Ho, Steven Sai Hang, Chuang, Hsiao-Chi, Sun, Jian, Qu, Linli, Wang, Gehui, Ho, Kin Fai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic compounds in fine particles play major roles in cardiopulmonary diseases. A study was conducted to determine the characteristics and cytotoxicity of organic aerosols (OA) in an urban roadside area in Hong Kong. Chemical components in nonrefractory submicron aerosol (NR-PM1) were observed using a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), and the chemical profile of organic compounds in NR-PM1 was examined with filter-based approach. Associations between cytotoxicity and organic sources and compositions were evaluated. NR-PM1 contributed to 84% of the PM1 concentrations. The NR-PM1 was composed of organics (55 ± 15%), followed by sulfate (21 ± 9%), ammonium (13 ± 6%), nitrate (10 ± 6%) and chloride (1 ± 1%). Three major organic sources were identified using positive matrix factorization, namely primary organic aerosol (POA, 40 ± 19%), more-oxidized oxygenated OA (MO-OOA, 32 ± 22%) and less-oxidized oxygenated OA (LO-OOA, 28 ± 19%). Variations in organic groups, including alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), oxy-PAHs (OPAHs), and fatty acids, demonstrated that traffic and cooking emissions were dominant pollution sources in this roadside station. Human lung alveolar epithelial (A549) cells were exposed to PM1, revealing increases in lactate dehydrogenase (LDH), reactive oxygen species (ROS), and interlukin-6 (IL-6), which indicated the occurrence of inflammatory and oxidative responses. POA was significantly associated with ROS and IL-6, and alkanes, hopanes, steranes, PAHs and OPAHs, and fatty acids presented medium to high correlations with LDH and IL-6, demonstrating the importance of primary emissions and organic compounds in cytotoxicity. This study demonstrated that organic compounds emitted from traffic and cooking play critical roles in PM-induced oxidative stress and inflammation in urban areas. [Display omitted] •Organics composed 55% of NR-PM1 followed by sulfate, ammonium, nitrate and chloride.•Primary OA, more-oxidized and less-oxidized oxygenated OA were major organic sources.•Traffic and cooking emissions were dominant pollution sources in the roadside station.•Oxidative and inflammatory responses were occurred after exposure to PM1 samples.•Primary organic compounds from traffic and cooking were critical in PM-induced cytotoxicity.
ISSN:0045-6535
DOI:10.1016/j.chemosphere.2020.128239