Shortwave infrared hyperspectral imaging system coupled with multivariable method for TVB-N measurement in pork

Monitoring and maintaining the freshness of meat is important to ensuring a supply of meat that is safe for consumption. The objective of this study is to present a shortwave infrared (SWIR) hyperspectral imaging system in combination with partial least-squares regression (PLSR) model and feature se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food control 2021-06, Vol.124, p.107854, Article 107854
Hauptverfasser: Baek, Insuck, Lee, Hoonsoo, Cho, Byoung-kwan, Mo, Changyeun, Chan, Diane E., Kim, Moon S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring and maintaining the freshness of meat is important to ensuring a supply of meat that is safe for consumption. The objective of this study is to present a shortwave infrared (SWIR) hyperspectral imaging system in combination with partial least-squares regression (PLSR) model and feature selection methods that can be used for the prediction of the total volatile basic nitrogen (TVB-N) content in fresh pork. The SWIR hyperspectral reflectance images were acquired for pork samples removed from refrigerated storage after 1, 4, 8, 11, 15, and 21 days. The hyperspectral SWIR images and actual TVB-N contents were used for constructing the PLSR model. PLSR models were optimized by using feature selection strategies such as random frog (RF) and variable importance in projection (VIP) score. The predictions from the optimal RF-PLSR model value with maximum normalization preprocessing exhibited correlation coefficient values for Rc2 and Rp2 of 0.94 and 0.90, respectively. Moreover, this research showed that visualization of TVB-N levels applied to the optimal model based on selected wavebands provide an intuitive way to interpret the spatial information of the sample. This study revealed that the multivariate models developed here for rapid and nondestructive evaluation of pork freshness can be feasible for use in online inspection systems as an effective substitute for traditional methods to evaluate pork freshness. •The short-wave infrared hyperspectral imaging techniques were used to rapidly determine TVB-N content in fork.•Partial least squared regression was used to develop model.•Optimal key-wavelength were selected using model-based random frog and VIP methods.•Applicability of the developed analytical method for rapidly determining TVB-N content was demonstrated.
ISSN:0956-7135
1873-7129
DOI:10.1016/j.foodcont.2020.107854