Shallow-junction diode formation by implantation of arsenic and boron through titanium-silicide films and rapid thermal annealing
The performance of diodes fabricated on n-type and p-type Si substrates by implanting As or B through a low-resistivity titanium-silicide layer is discussed. The effects of varying the implant dose, energy, and postimplant thermal treatment were investigated. After implantation, a rapid thermal anne...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1990-01, Vol.37 (1), p.183-190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of diodes fabricated on n-type and p-type Si substrates by implanting As or B through a low-resistivity titanium-silicide layer is discussed. The effects of varying the implant dose, energy, and postimplant thermal treatment were investigated. After implantation, a rapid thermal anneal was found to remove most of the implant damage and activate the dopants, which resulted in n/sup +/-p and p/sup +/-n junctions under a low-resistivity silicide layer. The n/sup +/-p junctions were as shallow as 1000 AA with reverse leakage currents as low as 5.5 mu A/cm/sup 2/. A conventional furnace anneal resulted in a further reduction of this leakage. Shallow p/sup +/-n junctions could not be formed with boron implantation because of the large projected range of boron ions at the lowest available energy. Ti silicide films thinner than 600 AA exhibited a sharp rise in sheet resistivity after a furnace anneal, whereas thicker films exhibited more stable behavior. This is attributed to coalescence of the films. High-temperature furnace annealing diffused some of the dopants into the silicide film, reducing the surface concentrations at the TiSi/sub 2/-Si interface.< > |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.43815 |