Zn3V3O8/NC hybrid microspheres self-assembled by layered porous nanosheets as a superior anode material for lithium/sodium-ion batteries
Zinc–vanadium oxides have been attracting increasing consideration as anode materials for lithium/sodium-ion batteries (LIBs and SIBs) recently. Present applications are hampered by issues, including their inferior electric conductivity and enormous volume variation. Herein, nitrogen-doped carbon wr...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2021-03, Vol.50 (11), p.4017-4027 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc–vanadium oxides have been attracting increasing consideration as anode materials for lithium/sodium-ion batteries (LIBs and SIBs) recently. Present applications are hampered by issues, including their inferior electric conductivity and enormous volume variation. Herein, nitrogen-doped carbon wrapped Zn3V3O8 (Zn3V3O8/NC) microspheres composed of abundant nanosheets were developed as an anode material by a self-assembly strategy and subsequent surface decoration. The resulting Zn3V3O8/NC porous hybrid exhibited a high specific capacity, impressive rate capability, and long-term cycling stability for both LIBs and SIBs. Notably, the superior electrochemical properties could be assigned to novel meso/microporous features, hybrid nitrogen-doped carbon, and mixed storage mechanisms. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d0dt04387g |